Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor.

red Cyanobacteriochromes Background
FEBS J, 24 Jul 2023 DOI: 10.1111/febs.16911 Link to full text
Abstract: Cyanobacteriochrome (CBCR) photoreceptors are distantly related to the canonical red/far-red reversible phytochrome photoreceptors. In the case of the CBCRs, only the GAF domain is required for chromophore incorporation and photoconversion. The GAF domains of CBCR are highly diversified into many lineages to sense various colors of light. These CBCR GAF domains are divided into two types: those possessing only the canonical Cys residue and those with both canonical and second Cys residues. The canonical Cys residue stably ligates to the chromophore in both cases. The second Cys residue mostly shows reversible adduct formation with the chromophore during photoconversion for spectral tuning. In this study, we focused on the CBCR GAF domain AnPixJg2_BV4, which possesses only the canonical Cys residue. AnPixJg2_BV4 covalently ligates to the biliverdin (BV) chromophore and shows far-red/orange reversible photoconversion. Because BV is a mammalian intrinsic chromophore, BV-binding molecules are advantageous for in vivo optogenetic and bioimaging tool development. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis and serendipitously obtained a unique variant molecule that showed far-red/blue reversible photoconversion, in which the Cys residue was introduced near the chromophore. This introduced Cys residue functioned as the second Cys residue that reversibly ligated with the chromophore. Because the position of the introduced Cys residue is distinct from the known second Cys residues, the variant molecule obtained in this study would expand our knowledge about the spectral tuning mechanism of CBCRs and contribute to tool development.
2.

Optical sensors of G protein signaling.

blue red LOV domains Phytochromes Review
FEBS J, 7 Dec 2020 DOI: 10.1111/febs.15655 Link to full text
Abstract: Heterotrimeric G proteins are central mediators of cellular signal transduction. They receive, process, and transduce signals from G protein-coupled receptors to downstream effectors. Since their discovery, a number of optical sensors of G protein localization and function have been developed and applied in living systems. In this minireview, we provide an overview of existing G protein-based sensors and the experimental approaches they utilize, with emphasis on live-cell imaging techniques. We outline recent advances, as well as identify current challenges and likely future directions in the field of G protein sensor development.
3.

Shared signaling pathways in Alzheimer's and metabolic disease may point to new treatment approaches.

blue Cryptochromes Review
FEBS J, 27 Aug 2020 DOI: 10.1111/febs.15540 Link to full text
Abstract: 'A peculiar severe disease process of the cerebral cortex' are the exact words used by A. Alzheimer in 1906 to describe a patient's increasingly severe condition of memory loss, changes in personality, and sleep disturbance. A century later, this 'peculiar' disease has become widely known as Alzheimer's disease (AD), the world's most common neurodegenerative disease, affecting more than 35 million people globally. At the same time, its pathology remains unclear and no successful treatment exists. Several theories for AD etiology have emerged throughout the past century. In this review, we focus on the metabolic mechanisms that are similar between AD and metabolic diseases, based on the results from genome-wide association studies. We discuss signaling pathways involved in both types of disease and look into new optogenetic methods to study the in vivo mechanisms of AD.
4.

An engineered photoswitchable mammalian pyruvate kinase.

blue AsLOV2 HeLa in vitro
FEBS J, 17 Jul 2017 DOI: 10.1111/febs.14175 Link to full text
Abstract: Changes in allosteric regulation of glycolytic enzymes have been linked to metabolic reprogramming involved in cancer. Remarkably, allosteric mechanisms control enzyme function at significantly shorter time-scales compared to the long-term effects of metabolic reprogramming on cell proliferation. It remains unclear if and how the speed and reversibility afforded by rapid allosteric control of metabolic enzymes is important for cell proliferation. Tools that allow specific, dynamic modulation of enzymatic activities in mammalian cells would help address this question. Towards this goal, we have used molecular dynamics simulations to guide the design of PiL[D24], an engineered pyruvate kinase M2 (PKM2) variant that harbours an insertion of the light-sensing LOV2 domain from Avena Sativa within a region implicated in allosteric regulation by fructose 1,6-bisphosphate (FBP). The LOV2 photoreaction is preserved in the PiL[D24] chimera and causes secondary structure changes that are associated with a 30% decrease in the Km of the enzyme for PEP resulting in increased pyruvate kinase activity after light exposure. Importantly, this change in activity is reversible upon light withdrawal. Expression of PiL[D24] in cells leads to light-induced increase in labelling of pyruvate from glucose. PiL[D24] therefore could provide a means to modulate cellular glucose metabolism in a remote manner and paves the way for studying the importance of rapid allosteric phenomena in the regulation of metabolism and enzyme control. This article is protected by copyright. All rights reserved.
5.

Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics.

violet Cyanobacteriochromes Background
FEBS J, 11 Nov 2011 DOI: 10.1111/j.1742-4658.2011.08397.x Link to full text
Abstract: Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max)  = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.
Submit a new publication to our database